فيما يعد ميزة إيجابية جديدة للذكاء الاصطناعي، طور العلماء في جامعة كاليفورنيا في سان دييغو خوارزمية للتعلم الآلي لمحاكاة التجارب البحثية الكيمياوية المستهلكة للوقت التي تحدث في بداية اكتشاف الأدوية، والتي يمكن أن تبسط العملية بشكل كبير وتفتح الأبواب لعلاجات غير مسبوقة للسرطان...
ابتكر علماء من الصين وإسبانيا نظاما يعتمد على الذكاء الاصطناعي يمكنه تمييز الخلايا السرطانية عن الخلايا السليمة، وتشير مجلة Nature، إلى أن هذا النظام يمكنه أيضا اكتشاف العدوى الفيروسية داخل الخلايا في مرحلة مبكرة جدا.
ووفقا للباحثين، تعتبر خوارزمية التعلم الآلي التي ابتكروها عند استخدامها مع الفحص المجهري عالي الدقة، أداة دقيقة جدا في كشف عدم التجانس الخلوي (Heterogeneity).
ولكن لهذه التقنية بعض القيود التي يجب التغلب عليها قبل بداية التجارب والاختبارات السريرية.
وتجدر الإشارة إلى أن الأكاديمي ألكسندر غينسبورغ مدير عام مركز غاماليا الروسي لبحوث الأوبئة والأحياء الدقيقة سبق أن أعلن عن لقاح مضاد للسرطان، سيشارك الذكاء الاصطناعي في ابتكاره ويكون مخصصا لشخص معين وفقا لحالته وخصائص جسمه. بحسب موقع “RT”.
طور العلماء في جامعة كاليفورنيا في سان دييغو خوارزمية للتعلم الآلي لمحاكاة التجارب البحثية الكيميائية المستهلكة للوقت التي تحدث في بداية اكتشاف الأدوية، والتي يمكن أن تبسط العملية بشكل كبير وتفتح الأبواب لعلاجات للسرطان لم يسبق لها مثيل.
وأجرى الدراسة باحثون من جامعة كاليفورنيا في سان دييجو في الولايات المتحدة الأميركية، ونشرت في السادس من مايو/ أيار 2024 في مجلة "نيتشر كومينكيشن" (Nature Communications) وكتب عنها موقع "يوريك ألرت" (EurekAlert).
وتجرى آلاف التجارب لتحسين الأدوية المرشحة لتصبح علاجات، ويمكن لمنصة الذكاء الاصطناعي الجديدة أن تعطي نفس النتائج في وقت أقصر. واستخدم الباحثون الأداة الجديدة، لتصميم 32 عقارا مرشحا جديدا لعلاج السرطان.
وتعد هذه التكنولوجيا جزءا من اتجاه جديد، ولكنه متنامٍ في العلوم الصيدلانية لاستخدام الذكاء الاصطناعي لتحسين عملية اكتشاف الأدوية وتطويرها.
وقال المؤلف الرئيسي البروفيسور تري إيديكر، الأستاذ في قسم الطب الباطني في كلية الطب بجامعة كاليفورنيا في سان دييغو والأستاذ المساعد في الهندسة الحيوية وعلوم الحاسوب في كلية جاكوبس للهندسة بجامعة كاليفورنيا في سان دييغو: "لقد أصبح اكتشاف الأدوية الموجه بالذكاء الاصطناعي مجالا نشطا للغاية في الصناعة، ولكن على عكس الأساليب التي يتم تطويرها في الشركات، فإننا نجعل تقنيتنا مفتوحة المصدر ومتاحة لأي شخص يريد استخدامها".
تعد المنصة الجديدة، والتي تسمى "بوليغون" (POLYGON)، منصة فريدة من نوعها بين أدوات الذكاء الاصطناعي المصممة لاكتشاف الأدوية حيث يمكنها تحديد الجزيئات التي تستهدف بروتينات متعددة، في حين أن بروتوكولات اكتشاف الأدوية الحالية تعطي الأولوية حاليا للعلاجات التي تعمل على هدف واحد. وتحظى الأدوية متعددة الأهداف باهتمام كبير بالنسبة للأطباء والعلماء بسبب قدرتها على تقديم نفس الفوائد التي يحققها العلاج المركب من أكثر من دواء.
وقد أشار الدكتور إيديكر إلى أن الأمر يستغرق سنوات عديدة وملايين الدولارات للعثور على دواء جديد وتطويره، خاصة إذا كنا نتحدث عن دواء له أهداف متعددة. وأوضح أن الصدفة كانت وراء
اكتشاف الأدوية القليلة متعددة الأهداف التي لدينا، ولكن هذه التكنولوجيا الجديدة يمكن أن تساعد في إخراج الصدف من المعادلة وإطلاق جيل جديد من الطب الدقيق.
ودرّب الباحثون بوليغون على قاعدة بيانات تضم أكثر من مليون جزيء معروف ونشط بيولوجيا وتحتوي على معلومات مفصلة حول خواصها الكيميائية وتفاعلاتها.
ومن خلال التعلم من الأنماط الموجودة في قاعدة البيانات، يستطيع بوليغون إنشاء صيغ كيميائية أصلية للأدوية المرشحة الجديدة والتي من المحتمل أن يكون لها خصائص معينة، مثل القدرة على تثبيط بروتينات معينة.
وقال إيديكر موضحا العمل الذي سيقوم به البرنامج: "تماما مثلما أصبح الذكاء الاصطناعي الآن جيدا جدا في إنشاء رسومات وصور أصلية، مثل إنشاء صور لوجوه بشرية بناء على الخصائص التي تطلب منه مثل العمر أو الجنس، فإن بوليغون قادر على توليد مركبات جزيئية أصلية تعتمد على الخصائص الكيميائية المرغوبة". وأشار إلى أنه في حالتنا هذه، بدلا من إخبار الذكاء الاصطناعي بالعمر الذي نريد أن يبدو عليه وجهنا، فإننا نخبره كيف نريد لدوائنا المستقبلي أن يتفاعل مع بروتينات المرض.
ولاختبار بوليغون، استخدمه الباحثون لإنتاج مئات من الأدوية المرشحة التي تستهدف أزواجا مختلفة من البروتينات المرتبطة بالسرطان. ومن بين هذه الجزيئات، قام الباحثون بتركيب 32 جزيئا لها أقوى التفاعلات المتوقعة مع البروتينين "إم إي كيه 1″ (MEK1) و"إم تي أو آر" (MTOR)، وهما زوج من بروتينات الإشارة الخلوية التي تعد هدفا واعدا لعلاج السرطان. ,تثبيط هذين البروتينين معا يكفي لقتل الخلايا السرطانية، حتى لو لم يكن تثبيط أحدهما بمفرده كافيا.
ووجد الباحثون أن الأدوية التي صنعوها كان لها نشاط كبير ضد البروتينين "إم إي كيه 1" و "إم تي أو آر"، ولكن كان لها تفاعلات قليلة خارج الهدف مع البروتينات الأخرى. ويشير هذا إلى أن واحدا أو أكثر من الأدوية التي حددها بوليغون يمكن أن يكون قادرا على استهداف كلا البروتينين كعلاج للسرطان، وهو ما يوفر قائمة من الخيارات يمكن للكيميائيين البشريين ضبطها بشكل دقيق.
وقال إيديكر: "بمجرد حصولك على المركبات المرشحة لتصبح أدوية، لا تزال بحاجة إلى إجراء كل العمليات الكيميائية الأخرى اللازمة لتحسين هذه الخيارات في علاج واحد فعال". وحذر من أنه "لا يمكننا ولا ينبغي لنا أن نحاول استبعاد الخبرة البشرية من مسار اكتشاف الأدوية، ولكن ما يمكننا فعله هو اختصار بضع خطوات من العملية".
وقد عبر إيديكر عن تفاؤله؛ مؤكدا أن رؤية كيف سيتطور هذا المفهوم خلال العقد المقبل، سواء في الأوساط الأكاديمية أو في القطاع الخاص، سيكون أمرا مثيرا للغاية، مشيرا إلى أن الاحتمالات لا حصر لها تقريبا. بحسب موقع “الجزيرة نت”.
الذكاء الاصطناعي يدخل المعركة أمام السرطان
كشف باحثون عن أداء جديدة تعتمد الذكاء الاصطناعي، بمقدورها تحديد الأورام السرطانية بدقة، وتسريع عملية تشخيص المرض.
ويمكن لأداة الذكاء الاصطناعي "الخوارزمية"، التي صممها خبراء في مؤسسة "رويال مارسدن"، ومعهد أبحاث السرطان في لندن، وإمبريال كوليدج لندن، تحديد ما إذا كانت الأورام غير الطبيعية الظاهرة في التصوير المقطعي سرطانية.
وقال خبير الأورام في مؤسسة "رويال مارسدن" بنجامين هانتر: "في المستقبل، نأمل أن يحسّن الكشف المبكر في جعل علاج السرطان أكثر نجاحا، وذلك بالتركيز على المرضى المعرضين لمخاطر عالية، ومتابعتهم سريعا من خلال التدخل العلاجي المبكر".
وحسبما ذكرت صحيفة "ديلي ميل" البريطانية، فقد استخدم فريق هانتر فحوصات التصوير المقطعي لنحو 500 مريض يعانون من خلايا سرطانية رئوية كبيرة، لتطوير خوارزمية ذكاء اصطناعي باستخدام الأشعة.
ويمكن لهذه التقنية استخراج معلومات مهمة من صور الأشعة التي لا يسهل على العين البشرية رصدها.
واختبر النموذج الذي طوره العلماء لتحديد ما إذا كان بإمكانه تحديد العقد السرطانية بدقة.
واستخدمت الدراسة مقياسا يسمى "المنطقة الواقعة تحت المنحنى" أو AUC، لمعرفة مدى فعالية النموذج في توقع السرطان.
وتشير القيمة 1 في المقياس إلى نموذج مثالي، بينما يرمز الرقم 0.5 إلى تخمين عشوائي.
وأظهرت النتائج أن نموذج الذكاء الاصطناعي يمكنه تحديد خطر الإصابة بالسرطان لكل عقدة مع قيمة AUC تبلغ 0.87.
وتعليقا على هذه النتائج، قال كبير الباحثين في الدراسة الدكتور ريتشارد لي: "من خلال هذا العمل، نأمل في رفع الحدود لتسريع اكتشاف المرض باستخدام تقنيات مبتكرة مثل الذكاء الاصطناعي".
ويتسبب السرطان في حوالي 10 ملايين حالة وفاة سنويا، أي ما يقرب من حالة وفاة واحدة من بين كل ست حالات وفاة في جميع أنحاء العالم، وفقا لمنظمة الصحة العالمية. بحسب موقع “سكاي نيوز عربية”.
كيف يساعد الذكاء الاصطناعي البشر في تطوير علاج السرطان؟
فيما يعد ميزة إيجابية جديدة للذكاء الاصطناعي، طور العلماء في جامعة كاليفورنيا في سان دييغو خوارزمية للتعلم الآلي لمحاكاة التجارب البحثية الكيمياوية المستهلكة للوقت التي تحدث في بداية اكتشاف الأدوية، والتي يمكن أن تبسط العملية بشكل كبير وتفتح الأبواب لعلاجات غير مسبوقة للسرطان.
وفي الدراسة التى أجراها باحثون من جامعة كاليفورنيا في سان دييجو بأميركا، ونقل نتائجها موقع "يوريك ألرت" (EurekAlert) عن مجلة "نيتشر كومينكيشن" (Nature Communications)، استخدم الباحثون الأداة الجديدة، لتصميم 32 عقارا مرشحا لعلاج السرطان.
وتجرى آلاف التجارب لتحسين الأدوية المرشحة لتصبح علاجات، ويمكن لمنصة الذكاء الاصطناعي الجديدة أن تعطي نفس النتائج في وقت أقصر.
وتعد هذه التكنولوجيا جزءا من اتجاه جديد، ولكنه متنام في العلوم الصيدلانية لاستخدام الذكاء الاصطناعي لتحسين عملية اكتشاف الأدوية وتطويرها.
أدوية موجهة بالذكاء الاصطناعي
وقال المؤلف الرئيسي البروفيسور تري إيديكر، الأستاذ في قسم الطب الباطني في كلية الطب بجامعة كاليفورنيا في سان دييغو والأستاذ المساعد في الهندسة الحيوية وعلوم الحاسوب في كلية جاكوبس للهندسة بجامعة كاليفورنيا في سان دييغو: "لقد أصبح اكتشاف الأدوية الموجه بالذكاء الاصطناعي مجالا نشطا للغاية في الصناعة، ولكن على عكس الأساليب التي يتم تطويرها في الشركات، فإننا نجعل تقنيتنا مفتوحة المصدر ومتاحة لأي شخص يريد استخدامها".
تعد المنصة الجديدة، والتي تسمى "بوليغون" (POLYGON)، منصة فريدة من نوعها بين أدوات الذكاء الاصطناعي المصممة لاكتشاف الأدوية حيث يمكنها تحديد الجزيئات التي تستهدف بروتينات متعددة، في حين أن بروتوكولات اكتشاف الأدوية الحالية تعطي الأولوية حاليا للعلاجات التي تعمل على هدف واحد. وتحظى الأدوية متعددة الأهداف باهتمام كبير بالنسبة للأطباء والعلماء بسبب قدرتها على تقديم نفس الفوائد التي يحققها العلاج المركب من أكثر من دواء.
وقد أشار الدكتور إيديكر إلى أن الأمر يستغرق سنوات عديدة وملايين الدولارات للعثور على دواء جديد وتطويره، خاصة إذا كنا نتحدث عن دواء له أهداف متعددة.
جيل جديد من الطب الدقيق
وأوضح أن الصدفة كانت وراء اكتشاف الأدوية القليلة متعددة الأهداف التي لدينا، ولكن هذه التكنولوجيا الجديدة يمكن أن تساعد في إخراج الصدف من المعادلة وإطلاق جيل جديد من الطب الدقيق.
ودرّب الباحثون بوليغون على قاعدة بيانات تضم أكثر من مليون جزيء معروف ونشط بيولوجيا وتحتوي على معلومات مفصلة حول خواصها الكيمياوية وتفاعلاتها.
ومن خلال التعلم من الأنماط الموجودة في قاعدة البيانات، يستطيع بوليغون إنشاء صيغ كيمياوية أصلية للأدوية المرشحة الجديدة والتي من المحتمل أن يكون لها خصائص معينة، مثل القدرة على تثبيط بروتينات معينة.
وقال إيديكر موضحا العمل الذي سيقوم به البرنامج: "تماما مثلما أصبح الذكاء الاصطناعي الآن جيدا جدا في إنشاء رسومات وصور أصلية، مثل إنشاء صور لوجوه بشرية بناء على الخصائص التي تطلب منه مثل العمر أو الجنس، فإن بوليغون قادر على توليد مركبات جزيئية أصلية تعتمد على الخصائص الكيمياوية المرغوبة". وأشار إلى أنه في حالتنا هذه، بدلا من إخبار الذكاء الاصطناعي بالعمر الذي نريد أن يبدو عليه وجهنا، فإننا نخبره كيف نريد لدوائنا المستقبلي أن يتفاعل مع بروتينات المرض.
الخبرة البشرية لا استغناء عنها
ولاختبار بوليغون، استخدمه الباحثون لإنتاج مئات من الأدوية المرشحة التي تستهدف أزواجا مختلفة من البروتينات المرتبطة بالسرطان.
ومن بين هذه الجزيئات، قام الباحثون بتركيب 32 جزيئا لها أقوى التفاعلات المتوقعة مع البروتينين "إم إي كيه 1″ (MEK1) و"إم تي أو آر" (MTOR)، وهما زوج من بروتينات الإشارة الخلوية التي تعد هدفا واعدا لعلاج السرطان، وتثبيط هذين البروتينين معا يكفي لقتل الخلايا السرطانية، حتى لو لم يكن تثبيط أحدهما بمفرده كافيا.
ورغم ما يستطيع الذكاء الاصطناعي القيام به، قال إيديكر: "لا يمكننا ولا ينبغي لنا أن نحاول استبعاد الخبرة البشرية من مسار اكتشاف الأدوية، ولكن ما يمكننا فعله هو اختصار بضع خطوات من العملية". بحسب موقع “BBC”.
اضف تعليق